Chromanones with Leishmanicidal Activity from Calea uniflora

Andréa Mendes do Nascimento^a, Fernanda Cristina Costa^b, Otavio Henrique Thiemann^b, and Dionéia Camilo Rodrigues de Oliveira^{a,*}

- ^a Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Via do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil. Fax: +551636332960. E-mail: drolivei@fcfrp.usp.br
- b Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, 13566-590, São Carlos, SP, Brazil
- * Author for correspondence and reprint requests
- Z. Naturforsch. 62c, 353-356 (2007); received August 21, 2006/January 15, 2007

The dichloromethane extract of *Calea uniflora* afforded a mixture of two novel chromanones, uniflorol-A (1) and uniflorol-B (2), and one known chromanone, 2,2-dimethyl-6-(1-hydroxyethyl)-chroman-4-one (3). The structures of these compounds were determined by spectroscopic methods. Biological activity of the compounds against *Leishmania major* promastigotes was evaluated. Mixture of the novel chromanones 1 and 2 showed significant growth inhibition of the parasite in the micrograms per milliliter range.

Key words: Calea uniflora, Asteraceae, Chromanones, Leishmanicidal Activity

Introduction

The genus Calea L. (Asteraceae, tribe Heliantheae) includes 110 species of shrubs, small trees or perennial herbs, distributed in tropical and subtropical regions of the New World (Karis and Ryding, 1994; Pruski and Urbatsch, 1988). The literature reports some biological activities for the genus Calea, such as antifungal, anti-inflammatory, cytotoxic, larvicidal, antiplasmodial and antihypertensive (Flach et al., 2002; Vichnewski et al., 1982; Cerain et al., 1996; Bork et al., 1997; Köhler et al., 2002; Guerrero et al., 2002). Chemical studies carried out on Calea species have revealed the occurrence of a variety of compounds including sesquiterpene lactones (Ober et al., 1985), p-hydroxyacetophenone derivatives (Bohlmann et al., 1981a), thymol derivatives (Metwally and King, 1985), benzofurans (Bohlmann et al., 1982), chromenes (Steinbeck et al., 1997) and others. Recently, we described the isolation of four p-hydroxyacetophenone derivatives from the underground parts of Calea uniflora (Nascimento et al., 2004). In addition to these compounds here we report the isolation and the structure elucidation of a mixture of two novel (1, 2) and one known chromanone (3) from this plant. A mixture of the novel (1, 2) and the known chromanone (3) were also tested for their leishmanicidal activity against Leishmania major Friedling promastigotes.

Results and Discussion

Uniflorol-A (1) and uniflorol-B (2) (Fig. 1) were isolated as a mixture of amorphous white solids. The molecular formula C₁₈H₂₂O₅ was determined by a pseudomolecular ion at m/z 341.1271 [M+Na]⁺ in the positive high resolution ESI mass spectrum. The IR spectrum indicated the presence of a hydroxy group (3450 cm⁻¹), an ester and cetone carbonyl function (1690, 1720 cm⁻¹) and an aromatic ring (1570, 1370 cm⁻¹). Two sets of data appeared in the ¹H, ¹³C NMR, and DEPT spectra, indicating that this compound was a mixture of two isomers (diastereomeres). The ¹H NMR spectrum (Table I) indicated signals for six methyl groups at δ 1.46 (12H, s) for **1** and **2**, 1.58 (3H, d, J = 6.6 Hz), 2.08 (3H, d, J = 7.2 Hz) for **1** and 1.60 (3H, d, J =6.6 Hz), 1.91 (3H, d, J = 7.3 Hz) for **2**, aromatic hydrogen atoms at δ 7.87–7.86 (2H, m), 7.51–7.47 (2H, m) and 6.93–6.90 (2H, m) for **1** and **2**, two olefinic hydrogen atoms at δ 6.38 (1H, q, J = 7.2 Hz) for **1** and 7.02 (1H, q, J = 7.3 Hz) for **2**, four methylene groups at δ 2.72 (4H, s) for **1** and **2**, 4.24 (2H, s) for **1** and 4.35 (2H, s) for **2**, and two methine groups at δ 5.98–5.92 (2H, m) for **1** and **2**.

The 13 C NMR spectrum (Table I) showed that chemical shifts of C-3′, C-4′, and C-5′ signals of **1** were downfield to δ 141.3 (+ 0.4), 15.8 (+ 1.5), 65.4 (+ 8.3) compared with corresponding signals in **2**, while those signals of C-8, C-1′ and C-2′ were upfield at δ 21.9 (- 0.1), 166.4 (- 0.3) and 131.7 (- 0.2).

Fig. 1. Structures of uniflorol-A (1), uniflorol-B (2), and 2,2-dimethyl-6-(1-hydroxyethyl)-chroman-4-one (3).

Table I. NMR spectral data of compounds 1 and 2 (in CDCl₃).

Position		1			2	
	$\delta_{ m H}$	$\delta_{ m C}$	НМВС	$\delta_{ m H}$	$\delta_{ m C}$	HMBC
1		159.7 s	H-6,5,3		159.7 s	H-6,5,3
2 3		119.9 s	H-6,10		119.9 s	H-6,10
3	7.87 - 7.86 m	124.0 d	H-5	7.87 - 7.86 m	124.0 d	H-5
4 5		133.9 s	H-8,6		133.9 s	H-8,6
5	7.51 - 7.47 m	134.4 d	,	7.51 - 7.47 m	134.4 d	,
6	6.93-6.90 m	118.7 d		6.93-6.90 m	118.7 d	
7	5.98-5.92 m	71.9 d		5.98-5.92 m	71.9 d	
8	1.58 d (6.6)	21.9 q		1.60 d (6.6)	22.0 q	
8 9	()	192.4 s	H-3,10,12,13	()	192.4 s	H-3,10,12,13
10	2.72 s	48.8 t		2.72 s	48.8 t	
11		79.4 s	H-10,12,13		79.4 s	H-10,12,13
12	1.46 s	26.6 q		1.46 s	26.6 q	
13	1.46 s	26.6 q		1.46 s	26.6 q	
1'		166.4 s	H-5'		166.7 s	H-5'
2' 3'		131.7 s	H-4',5'		131.9 s	H-4',5'
3'	6.38 q (7.2)	141.3 d	H-4',5'	7.02 q (7.3)	140.9 d	H-4',5'
4′	2.08 d (7.2)	15.8 q	*	1.91 d (7.3)	14.3 q	*
5'	4.24 s	65.4 t		4.35 s	57.1 t	

Compound	Leishmanicidal activity (% growth inhibition)					
	Dose [µg/ml]					
	100	50	25			
1 and 2	88.9 no activity	81.5 no activity	54.8 no activity			

Table II. Percentages of *L. major* Friedlin promastigote growth inhibition by compounds **1**, **2** and **3**.

Those data suggested that **1** was the isomer of **2**. The structures of **1** and **2** were deduced from detailed analysis of the ¹H and ¹³C NMR data aided by 2D NMR experiments (HMQC and HMBC).

A mixture of the new natural products **1** and **2** significantly inhibited *L. major* Friedling promastigotes growth by 88.9, 81.5 and 54.8% at concentrations of 100, 50 and 25 µg/ml, respectively (Ta-

ble II). Compound 3 had no detectable inhibitory activity.

Experimental

General

The UV spectra were obtained by a Hitachi U-3501 spectrophotometer. IR spectra were re-

corded on a Nicolet Protégé 460 spectrophotometer. ESI-MS was performed on a Ultra TOFTM-Q-Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometer. The 1 H (400 MHz) and 13 C NMR (100 MHz) spectra were recorded on a Bruker DRX 400 spectrometer in CDCl₃ using TMS as internal standard; chemical shift are in δ (ppm) and coupling constants (J values) in Hz. 2D NMR experiments (13 C- 1 H HMQC and 13 C- 1 H HMBC) were performed using a Bruker DRX 500 spectrometer.

Plant material

The plant was collected in March 1997, at the Washington Luis highway, 1 km from Posto Castelo, Brazil, and was identified by Dr. Jose L. Panero, Department of Botany, University of Texas. A voucher specimen (SPFR 04003) is deposited in the Herbarium of Department of Biology, FFCLRP/USP, Ribeirão Preto, Brazil.

Extraction and isolation

Dried and powdered underground parts of C. uniflora (200 g) were exhaustively extracted with dichloromethane at room temperature. The solvent was evaporated under vacuum to afford 4.2 g of crude extract. The crude extract was chromatographed by vacuum liquid chromatography (VLC) on silica gel and eluted with n-hexane, n-hexane/ ethyl acetate (gradient), ethyl acetate/methanol (gradient) and methanol to give 14 fractions (F1– F14). Fraction F6 eluted with *n*-hexane/ethyl acetate (7:3 v/v) was chromatographed over silica gel $(7 \times 30 \text{ cm}, 70-230 \text{ mesh}, n\text{-hexane/ethyl acetate})$ gradient 9:1 to 1:9 v/v, final 100% methanol) resulting in eleven subfractions (F601-F611). Fraction F608 was then subjected to preparative TLC using a solvent system (8:1:1 n-hexane/ethyl acetate/chloroform) to afford fraction F608-B (11 mg), which was submitted to HPLC [Shimpack PREP SIL (H) column, 20×250 mm, n-hexane/isopropyl alcohol 98:2, flow rate 9 ml min⁻¹] to give 2 mg of the mixture of compounds 1 and 2. Fraction F14 which was obtained from methanol was purified by preparative TLC (n-hexane/ethyl acetate 7:3) to yield compound 3 (2 mg).

Leishmanicidal activity

The effect of the compounds on the viability of L. major promastigotes was performed using parasites cultured according to established protocols (Napolitano et al., 2004). Stock solutions of compounds were prepared in dimethyl sulfoxide (DMSO) at 1.0 mg/ml. In all experiments the final content of DMSO was kept below 0.5% (v/v), a content that does not affect the parasite growth rate, mobility or morphology (Zhai et al., 1999). Further dilutions of compounds were made directly in the *L. major* culture medium immediately before use. The parasite cultures were prepared with or without compounds at final concentrations of 100, 50, 25 µg/ml; a control culture contained only DMSO. Promastigote viability was assessed colorimetrically by the reduction of the salt 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to the formazan dye (Berg et al., 1994). Absorbances at 290 nm were expressed as percentages relative to untreated controls. The bioassays were performed in triplicate. Results are shown in Table II.

Uniflorol-A (1): Amorphous white solid. – IR (KBr): $\nu_{\text{max}} = 3450$, 1720, 1690, 1570, 1370, 835, 795 cm⁻¹. – HR-ESI-MS: m/z = 341.1271 [M+Na]⁺. – ¹H and ¹³C NMR (400 and 100 MHz, CDCl₃): see Table I.

Uniflorol-B (2): Amorphous white solid. – IR (KBr): $\nu_{\rm max} = 3450,\ 1720,\ 1690,\ 1570,\ 1370,\ 835,\ 795\ {\rm cm^{-1}}.$ – HR-ESI-MS: $m/z = 341.1271\ [{\rm M+Na}]^+.$ – $^1{\rm H}$ and $^{13}{\rm C}$ NMR (400 and 100 MHz, CDCl₃): see Table I.

2,2-Dimethyl-6-(1-hydroxyethyl)-chroman-4-one (3): Yellow gum. – IR and 1 H NMR data were in agreement with the literature values (Bohlmann *et al.*, 1981b). – 13 C NMR (100 MHz, CDCl₃): δ = 193.0 (s, C-9), 159.8 (s, C-1), 138.5 (s, C-4), 134.1 (d, C-5), 123.6 (d, C-3), 120.1 (s, C-2), 119.1 (d, C-6), 79.7 (s, C-11), 70.0 (d, C-7), 49.2 (t, C-10), 27.0 (q, C-12/13), 25.4 (q, C-8). The 13 C NMR data of this compound has not been published previously.

Acknowledgements

The authors are grateful to FAPESP for financial support.

- Berg K., Zhai L., Chen M., Kharazmi A., and Owen T. C. (1994), The use of a water-soluble formazan complex to quantitate the cell number and mitochondrial function of *Leishmania major* promastigotes. Parasitol. Res. **80**, 235–239.
- Bohlmann F., Zdero C., King R. M., and Robinson H. (1981a), Heliangolides, and nerolidol and *p*-hydroxyacetophenone derivatives from *Calea* species. Phytochemistry **20**, 1643–1647.
- Bohlmann F., Zdero C., Pickard J., Robinson H., and King R. M. (1981b), New types of sesquiterpene lactones and other constituents from *Trichogonia* species. Phytochemistry **20**, 1323–1333.
- Bohlmann F., Marthur R., Jakupovic J., Gupta R. K., King R. M., and Robinson H. (1982), Furanohelian-golides and other compounds from *Calea hymenole-pis*. Phytochemistry **21**, 2045–2048.
- Bork P. M., Schmitz M. L., Kuhnt M., Escher C., and Heinrich M. (1997), Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kB. FEBS Lett. 402, 85–90.
- Cerain A. L., Pinzón R., Calle J., Marin A., and Monge A. (1996), Cytotoxic activities of Colombian plant extracts on Chinese hamster lung fibroblasts. Phytother. Res. 10, 431–432.
- Flach A., Gregel B., Simionatto E., Silva U. F., Zanatta N., Morel A. F., Linares C. E. B., and Alves S. H. (2002), Chemical analysis and antifungal activity of the essential oil of *Calea clematidea*. Planta Med. 68, 836–838.
- Guerrero M. F., Puebla P., Carrón R., Martín M. L., Arteaga L., and San Román L. (2002), Assessment of the antihypertensive and vasodilator effects of ethanolic extracts of some Colombian medicinal plants. J. Ethnopharmacol. **80**, 37–42.

- Karis P. O. and Ryding O. (1994), Tribe Heliantheae. In: Asteraceae: Cladistics and Classification (Bremer K., ed.). Timber Press, Inc., Portland, Chapter 22.
- Köhler I., Jenett-Siems K., Siems K., Hernández M. A., Ibarra R. A., Berendsohn W. G., Bienzle U., and Eich E. (2002), *In vitro* antiplasmodial investigation of medicinal plants from El Salvador. Z. Naturforsch. 57c, 277–281.
- Metwally M. A. and King R. M. (1985), A thymol derivative from *Calea pilosa*. Indian J. Chem. B **24**, 982.
- Napolitano H. B., Silva M., Ellena J., Rodrigues B. D. G., Almeida A. L. C., Vieira P. C., Oliva G., and Thiemann O. H. (2004), Aurapten, a coumarin with growth inhibition against *Leishmania major* promastigotes. Braz. J. Med. Biol. Res. 37, 1847–1852.
- Nascimento A. M., Salvador M. J., Candido R. C., Albuquerque S., and Oliveira D. C. R. (2004), Trypanocidal and antifungal activities of *p*-hydroxyacetophenone derivatives from *Calea uniflora* (Heliantheae, Asteraceae). J. Pharm. Pharmacol. **56**, 663–669.
- Ober A. G., Urbatsch L. E., and Fischer N. H. (1985), Germacranolides, calbertolides A, B, and C, from *Calea berteriana*. Phytochemistry **24**, 1743–1745.
- Pruski J. F. and Urbatsch L. E. (1988), Five new species of *Calea* (Compositae: Heliantheae) from Planaltine Brazil. Brittonia **40**, 341–356.
- Brazil. Brittonia 40, 341–356. Steinbeck C., Spitzer V., Starosta M., and Poser G. (1997), Identification of two chromenes from *Calea serrata* by semiautomatic structure elucidation. J. Nat. Prod. 60, 627–628.
- Vichnewski W., Goulart E. G., and Herz W. (1982), A heliangolide from *Calea lantanoides*. Phytochemistry **21**, 464–465.
- Zhai L., Chen M., Blom J., Theander T. G., Christensen S. B., and Kharazmi A. (1999), The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J. Antimicrob. Chemother. 43, 793–803